¹¹³Cd MAS NMR Study of Cadmium Halides and Their Salts

Shinichi Sakida* and Yoji Kawamoto*

Venture Business Laboratory, Kobe University, Nada-ku, Kobe 657-8501

[†]Division of Molecular Science, Graduate School of Science and Technology, Kobe University, Nada-ku, Kobe 657-8501

(Received June 26, 2000; CL-000618)

 ^{113}Cd magic-angle spinning (MAS) NMR spectra have been measured of twenty-three kinds of Cd^{2+} -containing halide crystals with known structures to determine the isotropic chemical shifts δ_{iso} . The δ_{iso} values of halogen coordination polyhedra largely changed with the kind and the coordination number of halogen. The relationship between the δ_{iso} values and the halogen coordination environments around Cd^{2+} was revealed.

A multinuclear NMR is known to be a powerful tool to directly acquire detailed local structures around a nucleus of interest. Cadmium-113 with 12.3% natural isotopic abundance is a spin-1/2 nucleus and has a relatively high NMR sensitivity. Therefore, ¹¹³Cd NMR spectroscopy has been used to examine the structures and dynamics of various inorganic, organic and biochemical substances in solid state and also in solution.

¹¹³Cd chemical shifts of simple inorganic crystals such as cadmium halides CdF₂, CdCl₂, CdBr₂·4H₂O and CdI₂ and cadmium chalcogenides CdO, CdS, CdSe and CdTe, have been already obtained by means of ¹¹³Cd NMR spectroscopy.¹⁻³ However, the relationship between the isotropic chemical shifts δ_{iso} and the anion coordination environments around Cd²⁺ in these crystals has not been examined.

In the present study the ^{113}Cd MAS NMR spectra are measured of twenty-three kinds of Cd^2+-containing halide crystals with known structures. Then the relationship between the δ_{iso} values and the anion coordination environments around Cd^2+ is discussed.

Nineteen kinds of Cd^{2+} -containing halide crystals, except CdX_2 (X = F, Cl, Br and I), were prepared. Those crystals are given in Table 1. All the prepared crystals were identified by powder X-ray diffraction measurements.

¹¹³Cd MAS NMR spectra of powdered samples were recorded on a Varian UNITY INOVA 400 MAS FT-NMR spectrometer at 88.738 MHz (9.4T) using a single pulse sequence. A pulse length of 4.0 μ s, pulse delay of 10.0–120.0 s and the accumulation of 24–160 scans were adopted. Samples in a cylindrical zirconia rotor were spun at a spinning rate of about 5–6 kHz. Chemical shifts were referenced to a 1M Cd(ClO₄)₂ aqueous solution at 0 ppm. The experimental error in isotropic chemical shift δ_{iso} was \pm 1 ppm.

All the MAS NMR spectra gave sharp peaks. The δ_{iso} values of all the crystals measured in the present study are summarized in Table 1. The δ_{iso} values of CdF₂, CdCl₂, CdBr₂·4H₂O and CdI₂ obtained from references 1 and 2 are also given in parentheses in the table. In order to make comparison easy these δ_{iso} values were referenced to CdI₂ at -713 ppm. The δ_{iso} values obtained in this study are considerably close to those obtained from the references. The difference in the δ_{iso} values between this study and the references may be because the δ_{iso} values from the references were obtained from static spectra. Figure 1 shows the ¹¹³Cd MAS NMR spectra of the representative Cd2+-containing halide crystals with different halogen coordination polyhedra of Cd²⁺, CdF₂, KCdF₃, CdCl₂, CdBrCl, CdBr₂, Cs₂CdBr₄, CdI₂ and RbCdI₃·H₂O. The halogen coordination polyhedra of Cd^{2+} in these crystals are given in parentheses in the figure. Numerals and asterisks in the figure denote δ_{iso} values and spinning side bands, respectively.

Figure 2 shows the δ_{iso} for halogen coordination polyhedra, which were obtained based on the δ_{iso} values of Cd²⁺-containing halide crystals. The δ_{iso} is –226 ppm for the CdF₈ polyhedron and in the range from –105 to –103 ppm for the CdF₆ octahedron. The δ_{iso} is in the range from 168 to 233 ppm for the CdCl₆ octahedron. The δ_{iso} ranges from –64 to –24 ppm for

Table 1. Isotropic chemical shifts (δ_{in}) determined	mined by ¹¹³ Cd MAS NMR at 9	9.4T and halogen coordination	number of Cd ²⁺ (N)

	*	130/				·	``````````````````````````````````````		
Crystal	δ _{iso} / ppm	N	Crystal	δ _{iso} / ppm	N	Crystal	δ _{iso} / ppm	N	
CdF ₂	-226 (-264) ^a	8	CdBrCl (CdCl ₆) ^b	186	6	CdBr ₂	-24 (0) ^{a,c}	6	
KCdF ₃	-105	6	(CdBrCl _s) ^b	166	6	RbCdBr ₃	-31	6	
RbCdF ₃	-103	6	$(CdBr_2Cl_4)^b$	135	6	CsCdBr ₃	-42	6	
CdCl ₂	183 (170) ^a	6	(CdBr ₃ Cl ₃) ^b	101	6	$Cd(AlBr_4)_2$	-64	6	
NH₄CdCl ₃	195	6	$(CdBr_4Cl_2)^b$	63	6	$(NH_4)_4CdBr_6$	-27	6	
KCdCl ₃	205	6	(CdBr ₅ Cl) ^b	25	6	Cs ₂ CdBr ₄	421	4	
RbCdCl ₃	190	6	$(CdBr_6)^b$	-21	6	CdL	-713 (-713) ^a	6	
CsCdCl ₃	168	6				TICdL	-715	6	
	201	6				RbCdI ₃ ·H ₂ O	115	4	
Cs ₂ CdCl ₄	193	6				α -Cs ₂ CdI ₄	156	4	
K₄CdCl ₆	233	6				γ-Ag ₂ CdI₄	65	4	
Na ₆ CdCl ₈	223	6							

Experimental error in δ_{iso} in this study is ±1 ppm. ${}^{a}\delta_{iso}$ obtained from references 1 and 2. These values were referenced to CdI₂ at -713 ppm in order to make comparison easy. ${}^{b}Structural units assumed for CdBrCl crystal. <math>{}^{c}\delta_{iso}$ of CdBr₂-4H₂O.

Figure 1. ¹¹³Cd MAS NMR spectra of representative Cd²⁺containing halide crystals with different halogen coordination polyhedra of Cd²⁺. Asterisks denote spinning side bands.

the CdBr₆ octahedron and is 421 ppm for the CdBr₄ tetrahedron. The δ_{iso} ranges from -715 to -713 ppm for the CdI₆ octahedron and from 65 to 156 ppm for the CdI₄ tetrahedron.

As clearly seen from Figure 2, halogen coordination polyhedra have quite different δ_{iso} . This means that the δ_{iso} is strongly influenced by the kind and the coordination number of halogen. In halogen coordination polyhedra with one kind of

halogen, on the other hand, the δ_{iso} for the halogen coordination polyhedron has a 91 ppm width at most and smaller than the δ_{iso} difference between the halogen coordination polyhedra with the same kind of halogen.

The following two relations were found in the δ_{iso} : (i) The δ_{iso} increases with decreasing coordination number, that is, $CdF_6>CdF_8, CdBr_4>CdBr_6,$ and $CdI_4>CdI_6$. This is because a decrease in coordination number leads to a decrease in shielding of the Cd nucleus. (ii) In halogen coordination polyhedra with the same coordination number the δ_{iso} increases in order of I, F, Br and Cl, namely, $CdCl_6>CdBr_6>CdF_6>CdI_6$, and $CdBr_4>CdI_4$. These tendencies are consistent with that previously reported for the chemical shifts of CdF_2, CdCl_2, CdBr_2·4H_2O and CdI_2.² In order to give an explanation about the above tendencies it will be necessary to examine the electronic states around Cd nucleus by means of an MO calculation.

Based on the δ_{iso} values of CdBr₂ and CdCl₂, seven δ_{iso} values observed in the MAS spectra of CdBrCl, -21, 25, 63, 101, 135, 166 and 186 ppm, can be assigned to CdBr₆, CdBr₅Cl, CdBr₄Cl₂, CdBr₃Cl₃, CdBr₂Cl₄, CdBrCl₅ and CdCl₆, respectively. Although CdBrCl is a solid solution between CdBr₂ and CdCl₂ and is isomorphous with CdCl₂,⁴ detailed local structure around Cd²⁺ has not been examined yet. The ¹¹³Cd MAS NMR spectrum of CdBrCl in the present study revealed the presence of seven types of halogen coordination octahedra $CdBr_nCl_{6-n}$ (n = 0-6). Assuming that the Br and Cl atoms in CdBrCl randomly occupy chlorine sites in CdCl₂ structure, a peak intensity ratio of CdBr_nCl_{6 - n} octahedra is 1 (for n = 0 and 6) : 6 (for n = 1 and 5) : 15 (for n = 2 and 4) : 20 (for n = 3). The peak intensity ratio of $CdBr_nCl_{6-n}$ octahedra was roughly estimated from the CdBrCl spectrum in Figure 1. The estimated ratio was 1 (n = 0) : 4 (n = 1) : 11 (n = 2) : 17 (n == 3): 15 (n = 4): 6 (n = 5): 1.4 (n = 6). This ratio is close to the assumed ratio, suggesting that Br and Cl atoms in CdBrCl randomly occupy chlorine sites in CdCl₂ structure.

In closing, the following three facts may be summarized. (1) The δ_{iso} for halogen coordination polyhedra of Cd²⁺ in cadmium halides and their salts are largely changed with the kind and the coordination number of halogen. Accordingly, discrimination between halogen coordination polyhedra of Cd²⁺ is easily possible on the basis of the δ_{iso} values. (2) The δ_{iso} values for the halogen coordination polyhedra composed of only one kind of halogen are (i) CdF₆ > CdF₈, CdBr₄ > CdBr₆, and CdI₄ > CdI₆. (ii) CdCl₆ > CdF₆ > CdF₆ > CdI₆, and CdBr₄ > CdI₄. (3) In a CdBrCl crystal the Br and Cl atoms randomly occupy chlorine sites in the CdCl₂ structure and seven types of halogen coordination octahedra CdBr_nCl_{6-n} (n = 0–6) are present.

References

- 1 A. Nolle, Z. Naturforsch., A, **33**, 666 (1978).
- 2 P. D. Ellis, *Science*, **221**, 1141 (1983).
- 3 P. D. Murphy and B. C. Gerstein, J. Am. Chem. Soc., 103, 3282 (1981).
- 4 National Bureau of Standards, Mono., 25 (11), 15 (1974).